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Non-equilibrium statistical mechanics I. 
The Boltzmann transport equation 

John M Blatt and Alex H Opie 
Applied Mathematics Department, University of New South Wales, Kensington, NSW, 
Australia 

Received 28 March 1974 

Abstract. By using a new method, the Boltzmann transport equation is deduced from the 
Liouville equation. The method involves an assumption of a statistical nature, which can 
be relaxed so as to yield equations more general than the Boltzmann equation, or than 
presently known extensions of the Boltzmann equation. The method also clarifies the 
origin of the time irreversibility of the Boltzmann equation. 

1. Introduction 

Approximately one hundred years ago, Ludwig Boltzmann set up his transport equation 
for dilute gases (Boltzmann 1872, 1875) by using intuitive arguments. The Boltzmann 
equation is the basis for nearly all discussions of transport properties in dilute gases, 
and there is excellent agreement between its prediction and experiment. 

Nonetheless, problems remain even one hundred years later ; the most important 
ones are: 

(i) The Boltzmann equation leads to time irreversibility, ie, the forward sense of 
time is distinguished, and memory of the initial state of the system at time t = 0 is lost 
as the solution proceeds towards thermal equilibrium. By contrast, the equations of 
classical dynamics are reversible in time, and the question arises how one can derive 
an equation with irreversible results (Boltzmann’s equation) from a time-reversible 
basic equation (Liouville’s equation for the full distribution function). In Boltzmann’s 
own derivation, the irreversibility can be traced back to a statistical assumption about 
the probability of collisions (the ‘Stosszahlansatz’) ; but it would be more satisfactory 
to have the statistical assumption appear directly related to quantities involved in the 
Liouville equation itself. 

(ii) The Boltzmann equation is restricted to very dilute gases ; extension to encompass 
transport properties of somewhat denser gases has proved extremely difficult. The 
methods used to date lead to expansions which contain divergent coefficients (Ernst 
et a1 1969), and are therefore unsatisfactory. 

(iii) The Boltzmann equation does not allow for ternary or higher-order collisions, 
only for binary collisions. In a chemical reaction such as 

binary collisions are of no effect, since the energy in the centre of mass system (which is 
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conserved in a binary collision) is positive for the left-hand side, negative for the right- 
hand side. An extension of the Boltzmann equation to allow for the possibility of 
chemical reactions is needed ; if developed, it would automatically provide a fundamental 
theory of the rate of chemical reactions in gases. 

In a series of papers we shall address ourselves to these problems, employing a new 
method to obtain, firstly, the Boltzmann equation and then extensions to it. The present 
paper emphasizes the principle of the new method. Other authors have described 
derivations of the Boltzmann equation starting from the Liouville equation (these 
include Kirkwood 1946, Bogoliubov 1946, Born and Green 1949, Hollinger and Curtiss 
1960, Hoffman and Green 1965) but we feel that the approach given here provides the 
clearest answer to the above three problems. A summary of this material was reported 
in a previous communication (Blatt and Opie 1974). 

The remainder of the introduction establishes notation. The N-particle, full distribu- 
tion function is normalized by 

where 

dt ,  = d3ri d3pi = dx, dy, dz, dpxi dpyi dp,,. (1.3) 

The distribution function is assumed to satisfy the Liouville equation 

where H, is the N-particle hamiltonian, the particles being confined to a rigid box of 
volume V, and the bracket on the right-hand side denotes a Poisson bracket. 

The Boltzmann equation is an equation for the one-particle projection of p, defined by 

where we have abbreviated the arguments (ri,pi) simply by ‘i’. Within the Boltzmann 
equation, one term describes the effect of binary collisions. The momentum symbols 
for the particles before the collision are primed,p; andp; , and after the collision unprimed, 
p1 and p2 ,  respectively-!. The impact parameter vector b (after the collision) is the 
component of r2 -r l  at right angles to the direction ofp, -p l ,  ie, 

(r,-rl)*(PZ-Pl) 
IP2-P112 

b = (rz-rl)- (Pz -PJ*  

The vectors p, -p l ,  and pi -pi lie in one plane : the scattering angle in the CM system 
is the angle between the vectorsp, -pl and pi -pi and these two vectors have the same 
magnitude. The relative speed of the two particles is given by 

lPz-P1l 
01, = -. 

m (1.7) 

For meaningful collisions, the impact parameter vector b has magnitude of the order 
of the range ro  of the inter-atomic forces, which is assumed to be small compared to all 

t It is to be noted that the allocation of primes is the reverse of that normally used: this choice is most con- 
venient for the present method. 
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other lengths of interest in a dilute gas. The impact parameter vector b determines the 
relation between ‘before collision’ and ‘after collision’ values : 

P; = P;(Pl,P294 P; = P;(Pl, P2 9 6) (1.8) 

where the detailed functional forms depend on the inter-atomic force law. Except for 
this effect of 6, distances of atomic dimensions are ignored in the Boltzmann equation 
(eg, if the particles just emerging from a collision are located at r; and rl;, say, these 
two vectors are identified and just called r,).  Similarly, the time duration of a collision 
is ignored. The resulting Boltzmann equation has the form : 

where H, is the one-particle hamiltonian. For simplicity, we shall ignore external 
forces on the system, so that H, = ( ~ , ) ~ / 2 m  and the Poisson bracket becomes 

(1.10) 

In the collision term (second term on the right-hand side) of (1.9), the integration over 
b is only two dimensional, since the vector b is restricted to lie in the plane perpendicular 
to p2 -pl. The integral is often written in the form 

1 d2b. .  . = 271 lom b db . . . . (1 .11)  

This completes the establishment of notation. In Q 2, we shall derive equation (1.9) 
from equation (1.4) by making suitable statistical assumptions. The new derivation 
and its consequences will be discussed in Q 3. 

2. The new derivation 

In general, the distribution function p(r, , p l ,  r2  ,p2,  . . . , rN,pN, t )  includes the description 
of correlated behaviour of the particles making up the system. If, however, it should 
happen at some time t that the particles are statistically uncorrelated, this would be 
described by means of an N-particle distribution function which is a product of single- 
particle functions, g(r,p, t), which we can normalize (without loss of generality) by 
means of: 

g(r,p, t) d3r d3p = I/ I 
where Vis the volume of the container. Given the normalization (1.2) of p, the N-particle 
distribution function of an uncorrelated system has the form : 

N! 
p(r1 ,P19 r29p2,. . * 9 rN,PN, t )  = @l ,P1, t)g(r,,p29 t )  . . . g(rN,PN, t )  . (2.2) 

The concepts of correlation and dynamical interaction between particles are distinct, 
and must be kept apart in thinking about a system of particles. For example, if the 
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N-particle hamiltonian has the form 

with 

and 

then V, represents the dynamical interaction, and the system is an independent-particle 
system if 4(r i j )  = 0. However, an ensemble of such systems may have been started off 
in such a way that the particles are correlated with each other at time t = 0. Then p is 
not of form (2.2) at time t = 0, and if p obeys the Liouville equation (1.4), p is then not 
of form (2.2) at any future time t ,  in spite of the absence of interactions in the hamiltonian. 
This is therefore an example of correlations without dynamical interactions. 

Conversely, even if the dynamical interactions exist (V, is not zero), it is possible in 
principle to prepare an ensemble of systems in such a way that ut time t = 0 the distribu- 
tion function is of the uncorrelated form (2.2), ie, such that 

The function go(r,p) is in the nature of an initial condition, and is restricted only by the 
normalization condition (2.1). This distribution function represents an ensemble of 
systems, each with dynamical interactions present, but with the particles being statistic- 
ally uncorrelated at time t = 0. 

Of course, this state of affairs cannot last. If the hamiltonian contains interactions, 
then the very first collision after t = 0 introduces correlations, and as a result, the 
N-particle distribution function p at any time other than t = 0 does not have the 
uncorrelated form (2.2). Formally, this shows itself by the fact that the form (2.2) is 
inconsistent with the Liouville equation (1.4), unless the system is an independent- 
particle system (V, = 0). An independent-particle system, and only such a system, has 
solutions of (1.4) of the form (2.2) at all times. 

Let us consider a time interval At which is : (a) much longer than the duration of one 
collision ; and (b)  much shorter than the mean free time of a typical particle between 
successive collisions. If the gas is sufficiently dilute, such a time interval At can be found. 
If p at time t = 0 has the form (2.6), p at time At does not have the form (2.2), no matter 
what we choose to be the function g(r,p,  At). 

However, we can now ask the question: ‘How should the function g(r,p,  At) be 
chosen so that (2.2) represents the best approximation to the true function p at time 
t = At?’ This becomes a sensible question as soon as we decide what we mean by ‘best’. 
Since the purpose of statistical mechanics is to calculate expectation values of physical 
quantities Q over ensembles, we shall phrase our criterion of ‘best’ in terms of such 
expectation values : 

Qp do, do, . . . dz, 
p dol do,. . . doN ’ (Q) = 

Here Q is any desired function of rl , p ,  , . . . , rN , p N .  
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We would like to demand that all expectation values come out right; but this is 
clearly too much, since it leads to the exact N-particle distribution function p ,  and no 
other. Hence, if we want an approximation of form (2.2) for p, we must be less ambitious 
in what we demand by way of a fit. 

Physical quantities Q can be classified as one-particle, two-particle, three-particle, 
etc, quantities, in the usual way. For example, the kinetic energy TN, equation (2.4), 
is classified as a one-particle quantity, since it is a sum of N separate terms, each term 
involving the position and momentum of no more than one particle. The potential 
energy VN, equation (2.5), is classified as a two-particle quantity, since it is a sum of 
N ( N  - 1)/2 terms, each term involving the coordinates of two particles (particles i and j ) .  

We can now state our criterion for a ‘best approximation’. In this hierarchy of 
one-particle, two-particle, . . . , k-particle quantities, we want to get agreement between 
the exact and the approximate expectation values for all one-particle quantities. With 
the approximate form (2.2) for p ,  we can achieve no more, and we shall see that this 
condition leads directly to the Boltzmann equation. If, on the other hand, we are willing 
to go to approximate N-particle distribution functions of forms more complicated 
than (2.2), we can sharpen up our condition for a ‘best approximation’-for instance, 
we may be able to demand agreement between the exact and the approximate expecta- 
tion values for all one-particle and for all two-particle quantities (but perhaps not for 
three-particle quantities). This is the subject of later papers in this series. 

The general one-particle quantity has the form 

and a simple calculation shows that its expectation value (2.7) can be expressed in terms 
of the one-particle projection of p, ie, off defined in equation (1.5) : 

J 

Thus, our criterion of ‘best’ approximation means that we must choose the function g 
in (2.2) in such a way that the one-particle projection of the approximate p, (2.2), is 
equal to the one-particle projection f of the exact p at time t = At. A simple calculation 
from (1.5) and (2.2) shows that the one-particle projection of (2.2) equals (N/V)g(r,p, t ) ,  
and thus our condition reads : 

N 
V -&, P, At) = f (r, P, At) (2.10) 

where the right-hand side is to be computed from the exact distribution function at 
time At, obtained by solving the Liouville equation (1.4) with initial condition (2.6), and 
then doing the projection (1.5). 

Let us now carry out this programme. We shall be interested, not in g(r,p, At) but 
rather in the difference: 

Ag = g(r, P, At) - g&, PI. (2.1 1)  

Straightforward eembinations of (1.2), (1.5) and (2.10) with (2.11) gives: 
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The solutions of the Liouville equation can be written in terms of dynamical con- 
figurations. Let b i , p i ,  ri,p;, , . , , r;V,p;V} be that initial configuration at t h e  t = 0 
which makes the system reach the desired final configuration {rl , p l , .  . . , rN,pN} at 
time t = At, under the action of the N-particle hamiltonian HN. Then (1.4) is solved by : 

(2.13) 

In this way, both integrands in (2.12) are reduced to the known (by assumption) N- 
particle distribution function at time t = O, given by (2.6). Substitution of (2.13) and 
(2.6) into (2.12) gives : 

p(rl , p i ,  r2  , p 2 ,  . . . , rN, PN, At) = p(r; ,pi, r; ,pi, . . . , rk,pk, 0). 

Ag = vl-N (go(ri,P;ko(r;7P;)~ * * g0kLp;V) 

-gO(rl,pl)gO(r2,p2). ‘ . gO(rN,pN)) d7Z dT3 . . . dzN’  (2.14) 

This expression is exact, and its evaluation yields the best possible Ag, and hence the 
best possible g(r,p, At), to represent the true N-particle distribution function by the 
approximation (2.2) at time t = At, in our sense of ‘best possible’. 

We now proceed to an approximate evaluation of (2.14) for dilute gases. For given 
momenta p ,  , p 2 , .  . . ,pN, and a given position r l  of the first particle, the domain of 
integration in the multiple integral over r2, r3, . . . , rN can be broken up into subdomains, 
according to the number of ‘other’ particles which have interacted with particle 1 
during the time interval At. Let A&,  i = 2,3, .  . . , N, be the ‘excluded volume’ for 
particle number i ,  ie, that region of ri such that particle i, with given momentum pi, 
must have interacted with particle 1, momentum pl,  during the t h e  interval At. The 
value of A V  will be deduced later; in general, A V  is a function ofp, and pi. 

s 

We now break up the multiple integration over the r coordinates as follows : 

J d3r2 d3r3 . . . d3rN 

= s d3r2 f d3r3.  .. 1 d3rN 
V - A V 2  V - AV3 V - AVN 

d3rN + permutations s V - AVN + lAv2 d3r2 s d3r3. .  . 
V - AV3 

d3rN + permutations 
V - A V N  

(2.15) 
The first line on the right-hand side of (2.15), a single term, gives the contribution of 
configurations in which none of particles 2,3, .  . . , N collide with particle 1 during the 
time interval At. The second line of (2.15) contains N - 1 terms altogether, each of which 
represents exactly one other particle colliding with particle 1 during time At ; the term 
written out explicitly is for a (1,2) collision, and the permutations represent (1,3),  
(1,4), . . . , (1, N) collisions. The third line of (2.15) contains (N - l)(N-2)/2 terms, each 
representing a ternary collision. 

When the integral in (2.14) is separated according to the scheme (2.15), we obtain the 
series 

(2.16) 

+ IAV2 d3r2 JAv, d3r3 1 V - AV4 d3r4. . . s 
+ . . . .  

Ag = Ag“’ + Ag‘2’ + Ag‘3’ + . . , 
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where the superscript of each term represents the order of the collisions involved, ie, 
Ag(’) is the contribution from binary collisions. 

We now evaluate Ag(’). By assumption, particle 1 does not collide during time t ,  
hence we have 

(2.17) 

The relationship between ri and ri for 2 < i < N is much more complicated, since all 
these other particles may collide with each other. Fortunately, we do not need these 
relations, because we can use the Liouville theorem : 

(2.18) 

This relation between the phase-space volume elements holds for an isolated system, 
and by assumption particles 2,3, . . . , N form an isolated system (isolated from particle 1) 
here. When we carry out the integrations, we encounter the integral : 

P1 
m r; = rl --At P; = P1. 

dr2  dr3 . . . drN = dr; dr; . . . drh. 

(2.19) 

where A V  is a suitable average of the excluded volume AY(rl ,p l  ,pi) over the momenta 
pi (see equation (2.33) later on), and no(rl) is the number density irrespective ofmomentum : 

Combination of (2.19), (2.16), (2.15) and (2.14) gives the result: 

Let us discuss the second factor first. Using the identity 

(2.20) 

(2.21) 

(2.22) 

the second factor is essentially equal to exp(-AVno(rl)). Later on, in the discussion 
at the end of this section, we shall show that this is equal to exp( - At/t,) where t ,  is the 
mean free time of particle 1 (position rl , momentum pi) between consecutive collisions 
with other particles. By our basic assumption of a dilute gas and our choice of Ar, this 
exponential can be replaced by unity. 

This leaves us with the first factor in (2.21). Substitution of (2.17) then gives the 
result : 

-- Ag‘” - -- p1 . grad go. 
At m (2.23) 

We have therefore recovered the ‘drift term’ of the Boltzmann equation, in essence, 
and we have done so in an intuitively plausible way, by considering the contribution 
of those configurations of the system in which particle 1 just drifts along during the 
time interval At, without suffering any collisions. 

Next, we turn to the evaluation of Ag‘’), the contribution from binary collisions of 
particle 1 with one other particle. The N - 1 terms in the second line of (2.15) all give 
the same result, so we take the term written explicitly (a (1,2) collision in time At) and 
multiply the result by N - 1. Particles 3,4, .  . . , N can be eliminated as before; those 
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integrations give the same exponential factor, which we again ignore for a dilute gas. 
We are therefore left with the expression : 

N - 1  
drz(go(r;, P;)go(r; 9 P;) - g&1, P1k!o(r, 3 P z ) ) .  (2.24) 

The integration is to extend over all those configurations ( r l  , p l ,  r ,  , p 2 )  which arise 
from the binary collision at some time t ,  in the interval 0 < t ,  < At. A schematic 
picture is shown in figure 1. 

Ag(2) N - 
v s,", 

Figure 1. The binary collisioii at time t, transforms the configuration ( r l , p i , r i , p ; )  at 
time t = 0 into the configuration (rl . p i ,  r2  , p 2 )  at time t = At. 

To define the 'collision instant' t ,  more precisely, we shall extrapolate backwards from 
time t = At on a straight-line path. We define : 

P z - P 1  u i z  = u 2 - u 1  = - m 
r = r z - r l  (2.25) 

and 

s( t )  = r - (At - t)ul , (2.26) 

s(t )  is the displacement vector from particle 1 to particle 2, obtained by straight-line 
extrapolation, ie, ignoring the actual collision. We now define the collision instant t ,  
as that value of the time t for which s(t)  has minimum absolute value. A simple calculation 
yields : 

(2.27) 

Furthermore, the extrapolated displacement s(t,) at this moment is identical with the 
impact parameter vector b defined by equation (1.6). Solving (2.26) for r = r z - r l  
with t set equal to t ,  yields the relation 

r ,  = r ,+b+(At- t , )u , , .  (2.28) 
The vector r ,  has three components : x,, y, ,  z ,  . The vector b has only two independent 
components (both perpendicular to  ulz), which we shall call b, and b, respectively. 
The relation (2.28) makes it clear that a specification oft,, b, and b, suffices to deduce 
x, , y, and z , ,  for given values of r l  , p 1  and p 2 .  
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The integration in (2.24) is a sixfold integral J d’p, J d’r,. We shall carry out the 
integrations over x,, y, and z,  first, withp, fixed. r i  andp, are free variables, not dummy 
variables of integration, and are therefore certainly fixed. We can thus replace the 
three dummy variables of integration x,, y,, z, by the alternative three variables: 
r , ,  b,, b,. The jacobian of this transformation is obtained easily from (2.28). Without 
loss of generality, we may assume u12 to be in the direction of z , ,  so that the vector 
equation (2.28) assumes the simple form 

x2 = xl+b,  Y, = Yl+b, Z,  = Z1+(At-tc)u12. (2.28a) 

The jacobian determinant is now trivial and is equal to - u l , .  Thus we have 

dx, dy, dz, = dt, db, db, u 1 2 .  s (2.29) 

Since the collision instant rc is now one of the dummy variables of integration (this is 
the essential point !), we get the desired contribution, ie, the contribution of binary 
collisions during the time interval At, precisely by imposing the limits of integration 
0 < t ,  < At on this integral. Thus (2.24) is replaced by 

We now make the following further approximations : (a) N - 1 is replaced by N ;  (b) the 
integration over t ,  is done by the mean-value theorem, to give just a factor At;  (c) the 
small differences between the positions U; , U;, U, and r l  are ignored t. 

To get the Boltzmann equation, we now need merely to write 

(2.31) 
ag Ag(” + Ag”) 
at At 
- 2  

and to multiply both sides of this by the factor ( N / V ) .  By equation (2.10), this gives 
afflat on the left-hand side, and by (2.23) and (2.30) we get exactly the right-hand side of 
equation (1.9), the Boltzmann equation. 

For completeness, we provide the estimate of the average excluded volume A V  in 
equation (2.19). For given momentap, and pi, the excluded volume A Y  can be obtained 
by integration from (2.29). Let us assume that the interatomic force law has a well 
defined range of action ro, beyond which the force vanishes. Then 

AF(pl  ,pi) = soAr dt, 1: 2nb db u l i  = (nri)uli At. (2.32) 

Actual interatomic forces do not have a sharply defined range of action r,, . However, 
the factor nri in (2.32) is simply the total collision cross section otot(pl,pi). When 
calculated quantum mechanically rather than from classical mechanics, this total cross 
section is a well defined, finite quantity even for a force law which decreases for large r 
like l/r6, for example. 

t A more careful discussion shows that what we are ignoring here is not nearly as big as all that: most of 
this displacement is taken care of by the drift term in the Boltzmann equation; what we are really ignoring 
is similar to the ‘collisional transfer’ term of Enskog’s theory of transport in dense gases, and to the ‘duration 
of the collision’ or ‘collisional delay time’ of Felix Smith (Enskog 1921, Smith 1972). Both are effects which 
vanish in the dilute gas limit. 
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The ‘suitable average’ AV to be inserted in (2.19) is then 

(2.33) 

The exponent x = AVno( r l )  in (2.22) is then equal to At/ t ,  where t ,  is the mean free 
time of particle 1 between consecutive collisions, defined by 

(2.34) 

By construction At is much less than this mean free time, so the ratio x = At/ t ,  is small 
compared to unity, and exp( - x )  can be replaced by unity. 

3. Discussion 

3.1. Irreversibility 

Our new derivation of the Boltzmann equation exhibits the origin of the time irreversi- 
bility immediately and directly. The replacement of the exact N-particle distribution 
function p(rl  , p l , .  . . , r N , p N ,  At )  by the approximate form (2.2) clearly throws away 
information about the state of the ensemble at  time t = At, information which is 
essential to recover the initial state precisely. As we go forward in time by successive 
time intervals At, the loss of information builds up, until no memory of the initial state 
remains apart from absolute constants of motion. 

While there are considerable doubts whether the Liouville equation represents any 
real thermal system adequately (Blatt 1959), it should be noted that the fundamental 
loss of information about the initial state, occasioned by thermal motion of the walls 
of the system, is not represented correctly by the drastic approximation (2.2) which is 
to hold everywhere in the interior of the gas. Thus, it is not unreasonable to expect 
real physical correlation effects, not included in the Boltzmann equation, even in very 
dilute gases. Such effects do exist, and will be derived in later papers in this series. 

3.2. Minor extensions and corrections 

Throughout the derivation in Q 2, we have made minor approximations appropriate 
to a very dilute gas. For example, equation (2.31) ignores the effects of ternary and 
higher-order collisions (the terms Ag(3) ,  Ag(4), etc). These approximations are not 
inherent in the basic assumption (2.2), and could be improved. For example, ternary 
collisions could be included if desired. 

However, there is considerable doubt whether such effects should be included, or 
at least are worth including, without a more fundamental improvement in the basic 
assumption (2.2). The assumption of no correlated behaviour at all is extremely 
restrictive and doubtful. Rather than working out the consequences of that assumption 
to the finest deail, it is probably preferable to investigate the consequences of somewhat 
less restrictive assumptions. 
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3.3. Major extensions 

The most obvious and immediate extension of this theory is to include some (but of 
course not all) correlations, so as to generalize the ansatz (2.2). In equilibrium statistical 
mechanics, the Ursell expansion is well known in the derivation of the virial series 
(Ursell 1927). It is true, though less generally known, that the Ursell expansion also 
leads to a treatment of equilibrium in chemical reactions (Schafroth et al 1957, Blatt 
1964), and to a theory of the superconducting state of metals (Schafroth 1954, Schafroth 
et a1 1957, Blatt 1964). 

The first extension along these lines is to include pair correlations, described by a 
function h(r, , p l ,  r, ,p2, t )  with the property 

h(rl ,pl ,r2,p2)drl  dr, = Order V (rather than of order V2).(3.1) 

The property (3.1) ensures that the pair correlations included in h are of ‘finite range’, 
ie particles at opposite ends of the volume Vare not correlated statistically. The ansatz 
(2.2) is then augmented to the form : 

p(l ,2 ,3 , .  . . , N )  = C{g(l)g(2)g(3). . . g(N) +h(l, 2)g(3)g(4). . .g(N)+permutations 

s 

+ h( 1,2)h(3,4)g(5)g(6) . . . g(N) + permutations + . . 
+ h(l,2)h(3,4)h(5,6). . . h(N - 1, N)+permutations}. ( 3 4  

Following our basic programme, we assume that p is of this form, precisely, at time 
t = 0;  we follow the time development of p by means of the Liouville equation, for a 
short time A t ;  and we ask for the ‘best’ approximation of the form (3.2) to the exact 
N-particle distribution function p at time At. Since the ansatz (3.2) is more flexible 
than (2.2), we can demand correspondingly more from a ‘best’ approximation. It turns 
out that it is possible to demand that the expectation values of all one-particle quantities 
and of all two-particle quantities can be fitted by the ‘best’ approximation of form (3.2); 
and conversely, this requirement determines the time development of the functions 
g and h uniquely. The detailed calculation is by no means simple, and the results are 
not such as one would be likely to obtain by purely intuitive arguments similar to those 
of Boltzmann. 

The development of equations based upon (3.2), and their discussion, forms the 
subject matter of future papers in this series. 

Other major extensions are possible. There is no reason to restrict ourselves to 
transport phenomena in gases. In any thermodynamic system, the true density matrix 
(or classically, the true distribution function) can be replaced by some approximation 
containing one or more arbitrary functions (such as the functions g(r,p,t) and 
h(r, , p l ,  r, , p2 ,  t) in (3.2)). We can then again employ the basic idea of deriving a ‘best’ 
approximation of specified functional form by demanding exact agreement for the 
expectation values of some, but not all, physical quantities. For instance, transport 
properties of spin systems can be approached in this fashion. 
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